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Abstract— The autonomic nervous system (ANS) stimulates
various sweat glands. Changes in skin conductance measure-
ments indicate sudomotor nerve activity (SMNA), and could be
used in inferring the underlying ANS stimulation. We model
hand and foot skin conductance measurements simultaneously
using a state-space model with Gaussian errors and sparse
impulsive events as inputs to the model. Using a multi-rate
formulation, we recover the timing and amplitudes of SMNA
using a generalized cross-validation based sparse recovery ap-
proach. We analyze experimental and simulated data to validate
the performance of the proposed approach and illustrate that
we are able to recover the underlying auditory stimuli.

I. INTRODUCTION

Electrodermal activity (EDA) represents the changes in the
electrical properties of skin due to sweating. Hypothalamic
areas control sweating primarily for thermoregulation of
the body. However, sweat secretion can also occur due to
other physiological events including emotional arousal [1].
Moreover, changes in skin conductance (SC), a measure of
EDA, are highly correlated with emotions and can be used
for interpreting emotional dysregulation and disturbances [2],
[3]. Changes in SC throughout the body are controlled by
the autonomic nervous system (ANS) [4]. The Analysis of
SC time series modulated by the ANS can help monitor the
mental health of an individual in order to prevent stress-
related health problems [5].

Many researchers have proposed different methods for
the deconvolution of SC time series to infer the timings
and amplitudes of stimulation as well as to estimate the
underlying physiological parameters with the goal of un-
covering emotional states using single channel SC data.
Benedek et al. [6] proposed a non-negative deconvolution
scheme from single SC time series to separate them into
discrete compact responses. They have also assessed devia-
tions of SC responses from the standard SC response shape.
However, their deconvolution scheme could capture noise
as SC responses and does not include individual differences
in the modeling of the rise and decay times. Greco et
al. [7] proposed a quadratic programming formulation to
decompose SC time series into tonic and phasic components.
In their formulation, they considered the sparsity condition
in neural stimuli from the ANS. However, the use of a fixed
regularization parameter for imposing the sparsity constraint
makes it challenging to find an accurate sparse solution. In
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another work, Gallego et al. [8] proposed a decomposition
approach to obtain a sparser solution in less time; however,
this approach leads to overly sparse solutions compared to
the underlying neural stimuli. Faghih et al. [9], [10], [11],
[12] proposed a two-step coordinate descent deconvolution
approach to account for individual differences in the phys-
iological system parameters. However, inferring the ANS
stimulation as well as physiological system parameters using
only one channel of SC data is challenging in presence of
noise.

Extensive research has been conducted to collect EDA
using wearable sensors that can provide better insight into
how affect and stress interact with daily life [13], [14],
[15]. Nevertheless, wearable sensors often suffer from poor
signal acquisition and motion artifacts. Moreover, adequate
analysis of EDA data in presence of artifacts and noise is yet
to be undertaken. Incorporating multiple channel data with
wearables to account for the poor signal acquisition could
potentially improve the deconvolution result. Faghih et al.
[16] proposed an approach to include both of the cortisol
and Adrenocorticotropic hormone (ACTH) time series using
a single state-space model, and then, they formulated a
concurrent deconvolution scheme of these hormone data.

Inspired by the work by Faghih et al. [16] for concurrent
deconvolution of the cortisol and ACTH hormone time series,
we utilize concurrently collected hand and foot skin conduc-
tance measurements to robustly infer the ANS stimulation.
We hypothesize that the changes in SC in different parts of
the body are due to the same ANS stimulation. We propose
a state-space model that includes the SC measurements from
the volar surfaces of both hand and foot. Moreover, we
propose a concurrent deconvolution algorithm and analyze
SC data using auditory stimulation experimental data.

II. METHODS

A. Dataset Description

We used the SC responses to loud sounds, simultaneously
recorded from palm, fingers and foot data [17], which
was collected for modeling event-related SC responses. The
dataset contains SC data recorded from 3 different locations
(the hypothenar of the non-dominant hand, the middle pha-
lanx of the dominant second and third finger and the medial
plantar surface of the non-dominant foot) of each of the
26 healthy participants in response to 20 auditory stimuli
(each of them is single white noise bursts of 1s duration).
Participants were asked to press a foot operated pedal upon
hearing the stimuli. A detailed description of the experiment
is given in [18]. We use simultaneous SC recordings from
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Fig. 1: System Model Block Diagram. A single neural stimuli signal u(t) generated by the ANS is responsible for the
phasic response in different regions of the skin throughout the body. The block diagram shows the same neural stimuli u(t)
is stimulating two different regions with a delay β . The attenuation term α reflects the ratio of the number of sweat glands
in the foot region to that of the hand region.

the middle phalanx of the dominant second and third finger
and the medial plantar surface of the non-dominant foot for
our study. Throughout the paper, we name them as hand SC
data and foot SC data, respectively. We discarded the data
corrupted with heavy noise or artifacts and the data having
very small SC responses.

B. Model Formulation for Phasic SC Deconvolution

The changes in SC, caused by eccrine sweat glands
activity, are stimulated by sudomotor nerve activity (SMNA)
in the ANS. SC data can be represented as the summation of
a fast varying component and a slowly varying component.
The slowly varying component of SC data, known as the
tonic component, is mainly intended for thermoregulation
of the body and the comparatively fast varying component,
designated as the phasic component, represents the activity of
ANS which is a reflection of emotional events. The SC signal
can be written as the summation of these two components
as follows:

ysc(t) = y(t)+ yT (t)

where ysc(t), y(t) and yT (t) represent the measured SC
signal, phasic component and tonic component, respectively.
Throughout the paper, yhsc(t), yh(t) and yhT (t) correspond re-
spectively to the SC signal, phasic component and tonic com-
ponent from hand and y f sc(t), y f (t) and y fT (t) correspond
to the SC signal, phasic component and tonic component
from the foot, respectively. In the preprocessing stage, we
remove the tonic components yhT (t) and y fT (t) from the SC
data yhsc(t) and y f sc(t) using the cvxEDA algorithm [7] and
separate out the phasic components yh(t) and y f (t) for hand
and foot, respectively. In this case, we use the default value
of the regularization parameter for l1-norm minimization.
We assume that the extracted phasic components have some
Gaussian noise added which we consider as the measurement
noise for them. We hypothesize that the same ANS stimula-
tion modulates the phasic component of SC data in different
eccrine sweat glands of the human body. We propose a state-
space model with hand and foot phasic SC data and the
ANS input. Figure 1 shows the complete block diagram of
the proposed system modeling. The state-space model is as
follows:

τrτd
d2xh(t)

dt2 +(τr + τd)
dxh(t)

dt
+ xh(t) = u(t) (1)

τrτd
d2x f (t)

dt2 +(τr + τd)
dx f (t)

dt
+ x f (t) = u(t−β ) (2)

where xh(t) and x f (t) are the two internal states which are
reflected into the observed phasic components from the hand
and foot, respectively. α refers to an attenuation term which
is related to the ratio of the number of sweat glands in both
the hand and foot. The term β refers to the delay in the foot
stimuli input and τr and τd are the rise and decay times of
the SC responses, respectively. β can be calculated by taking
the cross-correlation of the hand and foot phasic SC data
before deconvolution. The locations of the maximum values
of the cross-correlations of the hand and foot SC signal are
used to calculate the time lags β . Under the assumption
that the ANS stimuli are sparse as in [12], we represent the
input as u(t) = ∑

N
i=1 qiδ (t −∆i) where qi is the amplitude

of the impulse in the neural stimuli at time ∆i. Let Tu be
the sampling frequency of the neural stimuli and Ty be the
sampling frequency of the phasic SC data for each channel.
Timings of the neural impulses can be written as ∆i = iTu. qi
is zero if there is no impulse in the stimuli. Let yhk and y fk be
the observed phasic SC from the hand and foot respectively
at time instance tk = kTy.

yhk = zh(tk)+νhk (3)
y fk = αz f (tk)+ν fk (4)

where zh(t) = xh(t) and z f (t) = x f (t +β ). νhk and ν fk repre-
sent the measurement noise in each channel and we model
them as zero-mean Gaussian random variables. These are
the sampled values from the measurement noise continuous
variables νh(t) and ν f (t), respectively. Let x1(t) and x3(t) be
two internal states, x2(t) = zh(t), and x4(t) = z f (t). Also, let
the phasic SC measurement y1(t) = yh(t) and y2(t) = y f (t)
and measurement noise ν1(t) = νh(t) and ν2(t) = ν f (t). We
can write the system equations in (1)-(4) in a state-space



form as follows:

ẋ(t) = Acx(t)+Bcu(t)

y(t) = Ccx(t)+ν(t).

where x(t) =


x1(t)
x2(t)
x3(t)
x4(t)

, y(t) =
[

y1(t)
y2(t)

]
, ν(t) =

[
ν1(t)
ν2(t)

]

Ac =


− 1

τr
0 0 0

1
τd

− 1
τd

0 0
0 0 − 1

τr
0

0 0 1
τd

− 1
τd

, Bc =


1/τr

0
1/τr

0

 and Cc =

[
0 1 0 0
0 0 0 α

]
.

We derive the discrete analog of the system assuming that
the input and the states are constant over Tu and the discrete
version of the neural stimuli can be written as a vector u= [q1
q2 · · · qN ]

> that represents the entire neural stimuli over
the duration of SC data. Let Φ= eATu , and Γ=

∫ Tu
0 eA(Tu−ρ)dρ

to write the discrete state-space form as:

x [k+1] = Φx [k]+Γu[k]

y [k] = Ccx [k]+ν [k] .

As neural stimuli and SC measurement have different sam-
pling frequencies, i.e. Ty = LTu (L is a positive integer), we
let Ad = ΦL, Bd =

[
ΦL−1Γ ΦL−2Γ · · · Γ

]
, ud [k] =[

u [Lk] u [Lk+1] · · · u [Lk+L−1]
]>, νd [k] = ν [Lk]

and xd [k] = xd [Lk]; the multi-rate system can be represented
as follows:

xd [k+1] = Adxd [k]+Bdud [k] (5)
y[k] = Ccxd [k]+νd [k] (6)

where Ad and Bd are functions of τ =
[

τr τd
]>, α , Tu

and Ty. Let θ =
[

τ> α
]>. As the system is causal, we

use (5)-(6) to obtain the observation equation for kth sample:

y [k] = F [k]xd [0]+D [k]u+νd [k]

where F [k] = CcA k
d , D [k] =

Cc

[
A k−1

d Bd A k−2
d Bd · · · Bd 0 · · · 0︸ ︷︷ ︸

N−kL

]
, and

u=
[

ud [0] ud [1] · · · ud [k−1] · · · ud [M−1]
]>

N×1.
For the initial condition, we can let y0 = xd [0] =[

0 yh(0) 0 y f (0)
α

]>
similar to the work in [12].

Then, let y =
[

y [1]> y [2]> · · · y [M]>
]>

2M×1
, where

y[k] =
[

yhk y fk

]> for all k = 1,2 · · · ,M. Moreover,
let Fθ =

[
F [0] F [1] · · · F [M−1]

]>
2M×4,

Dθ =
[

D [0] D [1] · · · D [M−1]
]>

2M×N , and

ν =
[

ν [1] ν [2] · · · ν [M]
]>

2M×1. Therefore, we
can write the observation equation for all the sampled data
as follows:

y = Fθ y0 +Dθ u+ν .

Equivalently, we can represent the system as:

yh = Fθhy0 +Dθhu+νh (7)
y f = Fθ f y0 +Dθ f u+ν f . (8)

Here yh, Fθh , Dθh , and νh correspond to the odd rows
of y, Fθ , Dθ , and ν , respectively, and y f , Fθ f , Dθ f ,
and ν f correspond to the even rows of y, Fθ , Dθ , and ν ,
respectively.

Noise Variance Estimation: According to our assumption,
the noise is a Gaussian random variable with zero mean
and non zero variance. The spectral energy of the noise
is distributed over the whole spectral range of 0 to half
of the sampling frequency. For experimental SC signal, we
filter the phasic component of the SC signal with a 0.5 Hz
high pass filter. Then, we take the variance of the signal to
obtain an estimate of the noise variance in the high-frequency
region assuming the SC phasic responses does not exist in
the high-frequency region beyond 0.5 Hz. We interpolate this
calculated noise for the whole bandwidth including the low-
frequency region. This allows us to obtain an estimate of
the ratio of the noise variances σ2

h and σ2
f of hand and foot

phasic SC data, respectively.

C. Estimation
The sampling interval for phasic SC data and neural stim-

uli is Ty = 1 seconds Tu = 0.25 seconds, respectively. In order
to estimate the system parameters and the neural stimuli,
we use (7)-(8), and formulate the following optimization
problem assuming the sparsity constraint on u:

argmin
τ,α,u,λ

0.1≤τr≤1.4, 1.5≤τd≤6
0.01≤α≤1u≥0,0≤λ≤0.1

J(θ ,u,λ ) =
1

2σ2
h
||yh−Fθhy0−Dθhu||22

+
1

2σ2
f
||y f −Fθ f y0−Dθ f u||22 +λ ||u||pp

(9)

Here, the lp-norm is an approximation of the l0-norm (0 <
p≤ 2) and the lp-norm regularization parameter λ is chosen
such that there is a balance between filtering out the noise
and the sparsity level of u. We can solve the inverse problem
of finding a nonnegative u with a specific sparsity level
using the Focal Underdetermined System Solver (FOCUSS+)
algorithm [19]. To calculate an appropriate value of the
lp-norm regularization parameter λ adaptively, we use the
generalized crossvalidation (GCV) technique similar to the
approach in [16], [10], [12]. We use the singular value
decomposition based GCV technique by Zdunek et al. [20]
for estimating λ by minimizing:

argmin
λ

0≤λ≤0.1

G(λ |θ ,u) =

[
L ∑

L
i=1 γ2

i

(
λ

κ2
i +λ

)2
]

[
∑

L
i=1

(
λ

κ2
i +λ

)2
] (10)

where γ = R>yθ =
[

γ1 γ2 · · · γL

]> with yθ = y−
Dθ y0, and Dθ P

1
2
u = RΣQ> with Pu = diag(|ui|2−p) and Σ =

diag{κi}; R and Q are unitary matrices and the κi’s are the

singular values of Dθ P
1
2
u ; L is the total number of data

points in yh and y f , i.e., L = 2M [20].
We solve the optimization problem in (9) using the

following algorithm:



Algorithm: Concurrent Deconvolution

(a) Let i = 0.
Initialization:
(b) Initialize θ̃

0 by sampling a uniform random variable
on
[

0.10 1.4
]

for τ̃
(0)
r , on

[
1.5 6

]
for τ̃

(0)
d , and

on
[

0.01 1
]

for α̃0; let j = 1.

(c) Set θ = θ̃
( j−1); use FOCUSS+ to solve the inverse

problem in (9) to find the stimuli ũ( j) by initializing ũ(0)

at a vector with all ones.

(d) Set u = ũ( j); use the interior point method and
minimize the optimization problem in (9) to solve for
θ̃
( j)
. Let j = j+1.

(e) Repeat between steps (c)-(d) until j = 30.

(f) Set θ̂
0
= θ̃

( j) and û0 = ũ( j).

Outer Optimization Problem:
(g) Set i = i+1.

(h) Set θ = θ̂
(i−1)

; obtain û(i) solving the following steps:

i. Set m = 0 and û(i)(0) = û(i) and λ̂ (i)(0) = 2× 10−3.
Inner Optimization Problem:

ii. Set m = m+1.
iii. Set λ = λ̂ (i)(m−1)

and θ = θ̂
(i−1)

; solve for û(i)(m)

by initializing the optimization problem in (9) at
u = û(i)(m−1)

.

iv. Set u = û(i)(m−1)
and θ = θ̂

(i−1)
; solve for λ (i)(m)

by
initializing the optimization problem in (10) at λ =

λ̂ (i)(m−1)
.

v. repeat (ii)-(iv) until convergence and set û(i) = û(i)(m)
.

(i) Set u equal to û(i); solve for θ̂
(i)

using interior-point
method by initializing the optimization problem in (9) at
θ̂
(i−1)

.

(j) Iterate between (g)-(i) until convergence.

We start with several random initial values for system
parameters and run the algorithm. Finally, we choose the best
estimate that has the minimum value for the cost function in
(9).

III. RESULTS

Using the proposed approach, we concurrently deconvolve
hand and foot SC measurements collected during an auditory
stimulation experiment and recover the underlying stimuli
u(t) and the corresponding rise time (τr) and decay times (τd)
of SC responses as well as the foot attenuation (α). Results
in Figure 2 show that the proposed algorithm successfully
recovers the timings and amplitudes of neural stimuli as well
as the underlying system parameters, i.e. the rise and decay
times for two female participants (subject ID: 15 and 12) and

TABLE I: Deconvolution Errors with Our Single Channel
and Concurrent Deconvolution using Simulated Data

Approaches ∑ |∆i−∆̂i |
||û||0

||u−û||
||u||0

|τ1−τ̂1 |
τ1
×100% |τ2−τ̂2 |

τ2
×100%

Only Hand 0.26 0.61 5.80 8.25
Only Foot 0.28 1.22 21.57 6.83
Concurrent 0.18 0.46 1.23 3.26

Symbols with hat and without hat denote the estimated values and the true
values of the parameters, respectively.

two male participants (subject ID: 11 and 26). We considered
the signal segment from 200 seconds to 400 seconds for our
analysis. The multiple correlation coefficient (R2) has been
calculated for all the four reconstructed signals. The high
values of R2 (found to be greater than 0.97 for hand) for
hand phasic SC data suggest that our proposed algorithm can
successfully uncover underlying physiologically plausible
ANS stimulation. For foot data, the R2 values are greater
than 0.90. Lower R2 values for foot data suggest that foot
datasets are noisier than the hand datasets.

The estimated delay between hand and foot phasic SC data
(denoted by β ) for the two female and two male subjects
are 1.47 seconds, 1.12 seconds, 1.15 seconds and 1.43 sec-
onds, respectively. The estimated mean delays from auditory
stimulations to hand phasic SC data are 2.14 seconds, 1.80
seconds, 1.70 seconds and 1.70 seconds, respectively. The
recovered attenuation parameters α , i.e. the attenuation in
foot SC data compared to hand SC data are 0.0736, 0.4028,
0.3635 and 0.4121, respectively. Rise times τr are 0.56, 0.79,
0.77 and 0.52 seconds and decay times τd are 3.10, 3.12, 3.02
and 2.89 seconds, respectively.

To further validate our approach, we simulated noisy data
using the model parameters τr = 0.75, τd = 4 and α = 0.3
and a synthetic input. In this case, we have the ground
truth for comparison. To simulate noisy data, we added
zero-mean Gaussian noise with 20 dB and 15 dB SNR to
the hand and foot phasic SC data, respectively. These two
levels of noise are chosen given the higher levels of noise
in foot data. Figure 3 shows the simulated data for both
channels. We perform deconvolution on the simulated noisy
data. Figure 3 also shows the deconvolution performance
of other existing algorithms for comparison as well as
our single channel deconvolution approach. Results using
simulated data show our concurrent deconvolution scheme
is outperforming existing methods. The last three panels in
Figure 3 and the corresponding estimation errors in Table I
show our concurrent deconvolution is performing better than
our single channel deconvolution results.

IV. DISCUSSIONS

Deconvolution of SC data is a challenging problem.
There can exist multiple sets of physiological parameters
and stimuli that closely approximate an observed signal.
In addition, the smallest level of noise can perturb the
solution to a physiologically infeasible point due to the
sensitive nature of the bi-exponential function. We formu-
late a non-convex problem and solve it using a coordinate
descent deconvolution approach until convergence to a local
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Fig. 2: Estimated Deconvolution of the Experimental Phasic SC Signals Two Female and Two Male Particiapants:
In each of the panels, i) the top sub-panel shows the experimental (red stars) and the estimated (green curve) hand phasic
component; ii) middle sub-panel shows the experimental (blue stars) and estimated (green curve) foot phasic component;
and iii) bottom sub-panel shows the timings of the auditory stimuli (gray vertical lines) and the estimated ANS activation
timings and amplitudes (green vertical lines).

minimum. We use multiple initializations, and choose the
solution that minimizes the cost function compared to all
other solutions that the algorithm finds. To make sure the
problem is identifiable, we use appropriate constraints on
the unknowns to obtain physiologically plausible solutions.
Figure 3 shows the performance of LedaLab [6] and cvxEDA
[7]. These two existing methods can only solve the inverse
problem of finding u using single channel data assuming
known physiological parameters. In contrast, the proposed
approach can solve for both the physiological parameters
and the inverse problem using multichannel data.

According to our investigation with the analyzed auditory
stimulation data, usually, there is a very large phasic response
right after a stimulation has been given to the subject. In case
of female participant 2, the SC data shows multiple responses
after one auditory stimulation. Our algorithm successfully
detected these small responses. Generally, the distance be-
tween two consecutive phasic responses is more than a few
seconds. Therefore, we chose a minimum separation of 1

second between two adjacent peaks in the deconvolution
algorithm.

V. CONCLUSION

In this study, we proposed a physiological state-space
model for multiple SC measurements from different locations
of the body. Then, we provided a concurrent deconvolution
algorithm for multiple simultaneously collected SC data.
Analyzing experimental data, we showed our algorithm
successfully recovers the neural stimuli due to the known
auditory stimulation times. Our approach results in integrat-
ing multiple simultaneously collected SC data to recover
the ANS stimuli robustly in the presence of noise and
different artifacts. The state-space model formulation and
deconvolution algorithm successfully recover the stimuli.
One of the future directions is to use an inference framework
to obtain confidence intervals and reduce the time complexity
by avoiding large matrix inversions. Moreover, we can apply
an Expectation Maximization approach similar to the one
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Fig. 3: Performance Comparison of Proposed Concurrent
Deconvolution Approach with Existing Approaches: The
panels (i) and (ii) respectively depict the synthetic simulated
data with 20 dB and 15 dB noise for hand and foot. The
panels (iii) and (iv) show results with LedaLab [6]. The
panels (v) and (vi) show the results with cvxEDA [7]. The
panels (vii) and (viii) show the recovered neural stimuli
with our single channel deconvolution. The panel (vii) shows
the recovered results with our concurrent deconvolution
with simulated hand and foot SC data. Gray vertical lines
correspond to the ground truth, and red, blue and green
vertical lines corresponds to recovered neural stimuli with
hand data, foot data and concurrent deconvolution.

proposed by Wickramasuriya et al. [21] on the obtained
neural stimuli to detect stress.
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